https://www.avient.com/sites/default/files/2022-05/DOC 1879.pdf
As such, Avient Distribution does not
manufacture any raw materials, participate in any material
compounding nor mold any parts or final products.
Does Avient have a process for handling
hazardous materials?
Yes
How are incoming raw materials controlled for
quality?
https://www.avient.com/sites/default/files/resources/PolyOne%2520Standard%2520Quality%2520Response_2016_6_9.pdf
COAs are requested for all Raw
Materials.
These materials appear on the "core raw
materials list."
At the same time, the raw
materials that are contained in the Bill of
Materials (BOM) are also extended to the plant
to enable the plant to purchase the materials.
https://www.avient.com/sites/default/files/2022-03/Sustainability ESG Disclosures_Global Chemical Mgt Policy.pdf
Following Avient’s internal procedures for identifying, reducing, and managing hazardous materials
and substances of very high concern (SVHC) in our products
Protecting our associates, neighbors and the environment in the communities in which we operate,
by understanding the health and environmental impact of our raw materials and products where
hey are manufactured or used
https://www.avient.com/sites/default/files/2022-08/IATF 16949 North Baltimore.doc.pdf
Microsoft Word - IATF 16949 North Baltimore[80].doc
ABS Quality Evaluations
Certificate Of Conformance
This is to certify that the Quality Management System of:
Avient Corporation Engineered Materials Division
Avient Corporation
733 E.
Page 1 of 2
ABS Quality Evaluations
IATF 16949:2016
Certificate Of Conformance
ANNEX
Certificate No:
IATF No:
38972
0422162
Avient Corporation Engineered Materials Division
At Below Facilities:
Facility: Corporate
33587 Walker Road
Avon Lake, OH 44012
U.S.A.
https://www.avient.com/sites/default/files/2023-12/Avient-North Baltimore ISO_IEC 17025%5B29%5D.pdf
No. 0562.01) 11/30/2023 Page 1 of 1
SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017
AVIENT CORPORATION
733 East Water Street
North Baltimore, OH 45872
Claire Holman Phone: (419) 257-1327
MECHANICAL
Valid To: October 31, 2025 Certificate Number: 0562.01
In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this
laboratory to perform the following automotive plastics tests:
Test Method: Test Name:
ASTM D412 Tensile
ASTM D523 Specular Gloss
ASTM D618 (A) Conditioning of Plastics
ASTM D624 (Die C) Tear Strength
ASTM D638 Tensile Properties
ASTM D792 (A) Density and Specific Gravity by Displacement
ASTM D1004 Initial Tear Resistance
ASTM D1203 (A) Volatile Loss
ASTM D1895 (A) Apparent Density, Bulk Factor, Pourability
ASTM D1921 Particle Size (Sieve Analysis)
ASTM D2240 Durometer Hardness (Shore A and D)
ASTM E1331 Color by Spectrophotometry Using Hemispherical Geometry
FMVSS 571.302 Flammability
FORD BN-102-01 (A) Low Temperature Flexibility
FORD BO-131-03 Interior Odor
ISO 3795 Determination of Burning Behavior of Interior Materials
SAE J323 (A) Cold Cracking (Mandrel Bend)
SAE J1351 Hot Odor for Insulation Materials
SAE J1545 Instrumental Color Difference Measurement
DOC-058151 Angle of Repose
1 Laboratory Developed Method
For the tests to which this accreditation applies, please refer to the laboratory’s Mechanical Scope of Accreditation.
https://www.avient.com/sites/default/files/2020-09/surround-processing-guide-2020.pdf
These materials utilize long fiber
technology and exhibit enhanced shielding effectiveness versus standard short fiber conductive polymers.
TEMPERATURE
Material Rear
Center
Front
Nozzle
Melt
Mold
Nylon 6,6
540–570
530–560
530–560
540–570
540–570
200–300
(90–150)
Nylon 6,6
30% SS
540–570
530–560
530–560
540–570
540–570
200–300
(90–150)
PBT
510–410
(265–280)
490–540
(255–280)
480–530
480–530
480–530
150–250
(65–120)
PC
14% NiCF
540–570
540–570
530–560
530–560
530–560
150–250
(65–120)
ABS
470–520
460–520
460–520
460–530
(240–275)
460–530
(240–275)
100–200
(40–90)
PP
440–480
(225–250)
440–480
(225–250)
430–470
(220–245)
420–460
(215–240)
420–460
(215–240)
125–175
(50–80)
DRYING
Material Temperature
°F (°C) Time Minimum
Moisture
Maximum
Moisture
Nylon 6,6
14% NiCF 180 (80) 4–5 hours 0.05% 0.20%
Nylon 6,6
30% SS 180 (80) 4–5 hours 0.05% 0.20%
PBT
14% NiCF 250 (120) 6-8 hours 0.02% 0.03%
PC
14% NiCF 250 (120) 3–4 hours 0.02% 0.02%
ABS
14% NiCF 200 (90) 2–4 hours 0.05% 0.10%
PP
14% NiCF 180 (80) 2–4 hours 0.20% 0.30%
Equipment
• Feed throats smaller than 2.5" may cause bridging due to pellet size
- Larger feed throats will be more advantageous with long fiber EMI shielding resins
• General purpose metering screw is recommended
- Mixing/barrier screws are not recommended
• L/D ratio
- 18:1–20:1 (40% feed, 40% transition, 20% metering)
• Low compression ratio
- 2:1–3:1
• Deep flights recommended
- Metering zone 3.5 mm
- Feed zone 7.5 mm
• Check ring
- Three-piece, free-flowing check ring
• General purpose nozzle (large nozzle tips are recommended)
- Minimum orifice diameter of 7/32"
- Tapered nozzles are not recommended for long fiber EMI shielding resins
• Clamp tonnage:
- 2.5–5 tons/in2
Gates
• Large, free-flow gating recommended
- 0.25" x 0.125" land length
- 0.5" gate depth
Runners
• Full round gate design
• No sharp corners
• Minimum of 0.25" diameter
• Hot runners can be used
PROCESSING
Screw Speed Slower screw speeds are recommended to protect fiber length
Back Pressure Lower back pressure is recommended to protect fiber length
Pack Pressure 60–80% of max injection pressure
Hold Pressure 40–60% of max injection pressure
Cool Time 10–30 seconds (depends on part geometry and dimensional stability)
PROCESS CONSIDERATIONS
Recommended – retain fiber length (maximize conductivity)
• Low shear process
• Low screw speed and screw RPM
• Slow Injection speed
• Fill to 99–100% on first stage of injection
- Reduces potential nesting of fibers at gate location
- Improves mechanical performance near gate location
- Promotes ideal fiber orientation
Resin Rich Surface
• Achieved when using a hot mold temperature and longer cure times
≥ Max mold temperature recommendation
• Improved surface aesthetic
• Reduced surface conductivity
• Could reduce attenuation performance in an assembly
Fiber Rich Surface
• Achieved when using a cold mold temperature and shorter cure times
≤ Minimum mold temperature recommendation
• Improved surface aesthetic
• Reduced surface conductivity
• Could improve attenuation performance in an assembly
www.avient.com
Copyright © 2020, Avient Corporation.
Processing conditions can cause material properties to shift from the values stated in the information.
https://www.avient.com/sites/default/files/2021-12/PREPERM _ Edgetek Low-loss Dielectric Thermoplastics Technical Bulletin.pdf
TECHNICAL BULLETIN
PREPERM™ and Edgetek™ Low-Loss Dielectric Thermoplastics
The PREPERM™ and Edgetek™ dielectric portfolios
have been specially formulated to meet application
demands for materials that enable faster and more
reliable connections at high-band 5G frequencies
(mmWave).
With a dielectric constant (Dk) range
spanning 2.55 to 23, these materials are optimized
to boost antenna efficiency and deliver lightweight
solutions for 5G infrastructure and devices.
Processing conditions can cause material properties to shift from the values stated in the information.
https://www.avient.com/sites/default/files/2024-06/CM Europe Ltd Modern_Slavery_Statement - 2024 V4.pdf
In sourcing its own raw materials and in distributing products
manufactured by others, Avient is required to meet the specifications prescribed by its customers.
Our total raw material and
packaging spend for 2023 was ~$21 Million.
Avient currently does not require direct suppliers to
certify that the materials incorporated into their product comply with the laws regarding slavery and human trafficking.
https://www.avient.com/sites/default/files/2023-12/CAI W_C - Product Selection Guide EMEA_0.pdf
Helps reduce the quantity of raw material used, and the weight of the
cable.
Reduces material inventory and allows the use of general purpose resins.
Processing conditions can cause material properties to shift from the values stated in the information.
https://www.avient.com/sites/default/files/2023-11/Cesa Clean Processing Usage Guide.pdf
GUIDELINES FOR USING CESA CLEAN ADDITIVES
• Cesa Clean works best when molded maintaining normal (injection)
pressure/shear
• For best results, Avient recommends a “Running Color Change”
which eliminates breaks in the molding cycle
• Since the Cesa Clean concentrate will expand, it is recommended
to reduce the shot size by 20%
• It is designed for use at a let-down ratio (LDR) of 3.0% or (33:1); however,
use rate can vary depending on the severity of the contamination but
typically is 2.0–4.0% (a use rate higher than 6.0% may not have any
positive affect on the cleaning performance)
• Using Cesa Clean as a routine part of your color change rotation will
allow faster changes and consume a minimal amount of raw material
- Note: If the manifold is not cleaned routinely, this process may be
more time consuming and additional material will be required
• It is best to process at your normal polymer processing temperatures
- For best performance, stock temperature should be at least 400°F
- If 400°F is achieved during the purging process, no additional
activation will occur during the reprocessing of regrind
- All parts produced during the “Running Purge Cycle” should be
captured as regrind, resulting in a scrap-free color change
- If using sequential gates, open and close all gates at the same time
while purging the tool
- If contamination appears to be coming from one gate, open and
close first, and for an extended period of time, to force more material
through this location
- When cleaning in this manner, pay close attention to shot size
- Parts containing the previous or new color plus any Cesa Clean
can be used as regrind
INTRODUCING CESA CLEAN TO YOUR PROCESS
Hand Blend
• Hand weigh enough of the Cesa Clean and
natural resin mix to equate to 3–5 times the
barrel capacity
• Use rate should be 3.0% or 33:1 for routine
cleaning
• For difficult-to-clean tooling, or tooling which
is not routinely cleaned, start at 4.0% or 25:1
• Note: Do not attempt to vacuum load more than
15 feet from source as stratification/separation
may occur
Volumetric Feeder
• Calibrate feeder to dispense 3.0% or 33:1 for
routine cleaning
• For difficult-to-clean tooling, or tooling which
is not routinely cleaned, start at 4.0% or 25:1
• This style of feeder is highly recommended for
at-the-throat metering of Cesa Clean
Blending Units
Most blenders have an extra bin for an additive
• Fill the additive bin with Cesa Clean
• Set blender to introduce the Cesa Clean at
2.0 to 4.0%
• Note: Do not air convey any further than 15 feet
as Cesa Clean has a high density and may separate
from the mix.
Processing conditions can cause material properties to shift from the values stated in the information.